This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies
By closing this message or continuing to use our site, you agree to our cookie policy. Learn More
This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
PM Engineer logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
PM Engineer logo
  • Home
  • Magazine
    • Current Issue
    • Digital Edition
    • Archives
    • Radiant & Hydronics Report
    • Green Plumbing & Heating
    • Fire Protection & Design Special Section
    • NSF Design Special Section
    • Radiant Comfort Guide
    • PVF Outlook
    • Ad Index
  • Market Sectors
    • Green Plumbing
    • Green Mechanical Systems
    • Codes
    • Fire Protection
    • Radiant/Hydronics
    • Solar Thermal/Geothermal
    • Bath & Kitchen
    • Water Treatment
    • Technology
  • eNewsletter
    • Supply House Times e-news
    • pme eNewsletter Archives
    • Radiant & Hydronics eNews Archives
    • Bath & Kitchen Pro eNews Archives
    • Western Plumbing News Archives
    • Subscribe to Plumbing Group eNewsletters
  • Columnists
    • Julius Ballanco on Codes
    • Editor's Note
    • John Siegenthaler: Renewable Heating Design
    • Dan Holohan: Heating Help
    • Ray Wohlfarth: The Boiler Room
    • Jacqueline Wilmot: Fire Protection
    • Christoph Lohr: Professional Development Pipeline
    • Ethan Grossman: Water Cooler Conversations
    • Blog
  • Multimedia
    • PME AHR Expo 2019 Videos
    • pme Network Videos
    • eBook
    • Interactive Spotlights
    • Photo Gallery
    • Podcasts
    • Webinars
  • Products
  • More
    • History of Plumbing
    • Industry Calendar
    • Custom Content & Marketing Services
    • Classified Ads
    • Market Research
    • Bookstore
    • Continuing Education
  • Directories
    • B.I.G. Book
    • Rep Locator
  • Contact
    • Contact Us
    • Advertise
    • Editorial Submission Guidelines
Home » Ethan Grossman: Mensuration and the art of engineering
Green Mechanical SystemsColumnistsEthan Grossman: Water Cooler Conversations

Ethan Grossman: Mensuration and the art of engineering

We can apply what we know to a variety of design challenges.

Grossman pme
June 20, 2019
Ethan Grossman P.E., CPD
KEYWORDS mechanical engineer / plumbing engineers
Reprints
No Comments

ditor’s note: This is the fourth in a series of stories that borrows from daily life experiences to illustrate engineering concepts.

I recently spoke with a civil engineer who had an electrical engineering design challenge. Who better to ask than someone with experience in plumbing engineering?

Sounds like the introduction to a bad engineering joke. Naturally, I went straight to the ASPE design handbooks and my “Mechanical Engineering Reference Manual” for a solution.

The design challenge he presented was this: During the summer months in the Southwest desert, how close to the ground will high-tension electrical wires come to the ground if they were installed during the winter? He informed me that there was a code requirement that the wires should not “sag” to within 25 feet of the ground. The wires could be aluminum or copper, and they were supported by structures that were installed 1/8-mile apart.

The gears in my head turned slowly, activating a chain lift that raised an old vault door where some equations were kept.

The first equation that came to my mind was from the “ASPE Design Manual, Volume 4.” Equation 11-1 helps us determine the expansion of piping due to changes in temperature. In plumbing and hydronics, piping will expand as the fluid inside changes temperature. This is important for us to know so that we include design elements that accommodate this expansion or contraction.

Figure 1

> FIGURE 1.

Common design elements include expansions loops and expansion tanks. There are very good reasons for us to consider these types of physical phenomena. I think a lot of it boils down to learning from others who “learned the hard way.”

 

The rest of the story

The second part of the equation that I wanted to determine was the installed length of high- tension wire. It would be an arc, whose “chord” was 1/8-mile long. I was fairly comfortable with geometry and I had a strong hunch that there were mathematical formulas that helped determine all the bits and pieces of circles and triangles.

The “Mechanical Engineering Reference Manual” has a whole appendix related to this, and it falls under the topic of Mensuration, defined as “the measuring of geometric magnitudes, lengths, areas and volumes.” Once I determined the length of wire, I could make some assumptions and figure out if the wire would sag down far enough in the summer to clothesline some unsuspecting ATV enthusiast enjoying the desert trails.

 

We can see from Figure 1 above that “h” is the distance that the high-tension wire would sag and “s” is the length of wire between supports. I did some research and found out that 5% is the maximum nominal tolerance for a high-tension wire to sag. Since 660 feet is 1/8 of a mile, I calculated the maximum sag, “h”, to be 33 feet.  The equation I used out of the mensuration figures in MERM to find the length of the arc is:

gross_equation

It turns out that the total length of the high-tension wire, installed at 35°F during the desert winter is 663 feet.

Next, I took this length of wire and plugged it into the equation for expansion of a material due to change in temperature,  Performing this analysis for both copper and aluminum materials during a hot summer day of 125°F, resulted in a total expansion of 12 inches and 17 inches respectively. I then plugged this extended length back into the mensuration formulas to find out the additional “sag.” See Table 1 on Page 22.

pme0619_Grossman_Chart1

> TABLE 1.

What I’ve tried to present for you is a design problem where you can use the art of engineering. Problems like this come up now and then and I think it’s what makes our jobs interesting. Interesting is probably not the proper term when you find out that the high-tension wire did indeed “sag” below the code-required 25-foot height above grade after it was installed.

The art of our practice comes with the idea that we can apply what we know to a variety of design challenges. If we practice staying curious about different things, we will be prepared to work together and figure things out as they come up.

One of the funniest things I learned from this design problem: There is real mathematical term for that distance between the chord of a circle and the arc radius. It’s actually called the “sagitta.”

Subscribe to PM Engineer

Recent Articles by Ethan Grossman

Ethan Grossman: Getting dirty in engineering

Ethan Grossman: The elephant in the room

Ethan Grossman: Borrowing from daily life experiences to illustrate engineering concepts

Ethan Grossman: Texting in engineering

Ethan Grossman, P.E., CPD, is the plumbing and fire-protection discipline leader at SmithGroup’s Boston office. He can be reached by email at ethan.grossman@smithgroup.com.

Related Articles

Ethan Grossman: The elephant in the room

Ethan Grossman: Getting dirty in engineering

Ethan Grossman: Borrowing from daily life experiences to illustrate engineering concepts

Ethan Grossman: Texting in engineering

You must login or register in order to post a comment.

Report Abusive Comment

Subscribe For Free!
  • Print & Digital Edition Subscriptions
  • eNewsletters
  • Online Registration
  • Subscription Customer Service

More Videos

Popular Stories

John Siegenthaler: Renewable Heating Design

John Siegenthaler: Pellet-fired boilers need thermal storage

Chis Wysoczanski, P.E.

2019 pme Mechanical Engineer of the Year: Fitzemeyer & Tocci's Chris Wysoczanski, P.E.

Julius Ballanco

Julius Ballanco: Not much changed at IAPMO

Ethan Grossman

Ethan Grossman: Getting dirty in engineering

Christoph Lohr

Christoph Lohr: Looking at the importance of personality metrics

Mechanical Engineer of the Year 2017 360

Events

December 30, 2030

Webinar Sponsorship Information

For webinar sponsorship information, visit www.bnpevents.com/webinars or email webinars@bnpmedia.com.

View All Submit An Event

Products

2020 National Plumbing & HVAC Estimator

2020 National Plumbing & HVAC Estimator

See More Products

PME-PlumberEngineer2017_360.png


PME Rep Locator

PM Engineer Magazine

PME November 2019

2019 November

Check out the November 2019 edition of PME: PME's Mechanical Contractor of the Year, drainage trends, pellet-fired boilers, flue gas venting, and much more!
View More Create Account
  • Resources
    • List Rental
    • Reprints
    • eNewsletters
    • Contact Us
    • Privacy Policy
    • Editorial Submissions
  • Want More?
    • Subscribe
    • Industry Links
    • Connect
    • Survey And Sample
  • Plumbing Group
    • Plumbing & Mechanical
    • Supply House Times
  • Advertise
    • Advertise
    • Plan For 2020!

Copyright ©2019. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing